29 research outputs found

    Mean-field optimal control and optimality conditions in the space of probability measures

    Get PDF
    We derive a framework to compute optimal controls for problems with states in the space of probability measures. Since many optimal control problems constrained by a system of ordinary differential equations (ODE) modelling interacting particles converge to optimal control problems constrained by a partial differential equation (PDE) in the mean-field limit, it is interesting to have a calculus directly on the mesoscopic level of probability measures which allows us to derive the corresponding first-order optimality system. In addition to this new calculus, we provide relations for the resulting system to the first-order optimality system derived on the particle level, and the first-order optimality system based on L2L^2-calculus under additional regularity assumptions. We further justify the use of the L2L^2-adjoint in numerical simulations by establishing a link between the adjoint in the space of probability measures and the adjoint corresponding to L2L^2-calculus. Moreover, we prove a convergence rate for the convergence of the optimal controls corresponding to the particle formulation to the optimal controls of the mean-field problem as the number of particles tends to infinity

    Ensemble-based gradient inference for particle methods in optimization and sampling

    Full text link
    We propose an approach based on function evaluations and Bayesian inference to extract higher-order differential information of objective functions {from a given ensemble of particles}. Pointwise evaluation {V(xi)}i\{V(x^i)\}_i of some potential VV in an ensemble {xi}i\{x^i\}_i contains implicit information about first or higher order derivatives, which can be made explicit with little computational effort (ensemble-based gradient inference -- EGI). We suggest to use this information for the improvement of established ensemble-based numerical methods for optimization and sampling such as Consensus-based optimization and Langevin-based samplers. Numerical studies indicate that the augmented algorithms are often superior to their gradient-free variants, in particular the augmented methods help the ensembles to escape their initial domain, to explore multimodal, non-Gaussian settings and to speed up the collapse at the end of optimization dynamics.} The code for the numerical examples in this manuscript can be found in the paper's Github repository (https://github.com/MercuryBench/ensemble-based-gradient.git)

    Port-Hamiltonian structure of interacting particle systems and its mean-field limit

    Full text link
    We derive a minimal port-Hamiltonian formulation of a general class of interacting particle systems driven by alignment and potential-based force dynamics which include the Cucker-Smale model with potential interaction and the second order Kuramoto model. The port-Hamiltonian structure allows to characterize conserved quantities such as Casimir functions as well as the long-time behaviour using a LaSalle-type argument on the particle level. It is then shown that the port-Hamiltonian structure is preserved in the mean-field limit and an analogue of the LaSalle invariance principle is studied in the space of probability measures equipped with the 2-Wasserstein-metric. The results on the particle and mean-field limit yield a new perspective on uniform stability of general interacting particle systems. Moreover, as the minimal port-Hamiltonian formulation is closed we identify the ports of the subsystems which admit generalized mass-spring-damper structure modelling the binary interaction of two particles. Using the information of ports we discuss the coupling of difference species in a port-Hamiltonian preserving manner

    Instantaneous control of interacting particle systems in the mean-field limit

    Full text link
    Controlling large particle systems in collective dynamics by a few agents is a subject of high practical importance, e.g., in evacuation dynamics. In this paper we study an instantaneous control approach to steer an interacting particle system into a certain spatial region by repulsive forces from a few external agents, which might be interpreted as shepherd dogs leading sheep to their home. We introduce an appropriate mathematical model and the corresponding optimization problem. In particular, we are interested in the interaction of numerous particles, which can be approximated by a mean-field equation. Due to the high-dimensional phase space this will require a tailored optimization strategy. The arising control problems are solved using adjoint information to compute the descent directions. Numerical results on the microscopic and the macroscopic level indicate the convergence of optimal controls and optimal states in the mean-field limit,i.e., for an increasing number of particles.Comment: arXiv admin note: substantial text overlap with arXiv:1610.0132

    An analytical framework for a consensus-based global optimization method

    Full text link
    In this paper we provide an analytical framework for investigating the efficiency of a consensus-based model for tackling global optimization problems. This work justifies the optimization algorithm in the mean-field sense showing the convergence to the global minimizer for a large class of functions. Theoretical results on consensus estimates are then illustrated by numerical simulations where variants of the method including nonlinear diffusion are introduced

    Time-continuous microscopic pedestrian models: an overview

    Full text link
    We give an overview of time-continuous pedestrian models with a focus on data-driven modelling. Starting from pioneer, reactive force-based models we move forward to modern, active pedestrian models with sophisticated collision-avoidance and anticipation techniques through optimisation problems. The overview focuses on the mathematical aspects of the models and their different components. We include methods used for data-based calibration of model parameters, hybrid approaches incorporating neural networks, and purely data-based models fitted by deep learning. Some development perspectives of modelling paradigms we expect to grow in the coming years are outlined in the conclusion.Comment: 26 pages; chapter accepted for publication in Crowd Dynamics (vol. 4
    corecore